Silicone in Medical Applications

Silicones are oligomers or polymers of organic siloxanes, which are products of organochlorosilanes [1]. The basis for all silicones is quartz sand or silica from which silicon is obtained in the first phase (Eq. 1.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 42.79 Price includes VAT (France)

Softcover Book EUR 52.74 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  1. J. Navodnik, M. Kopčič, Plastik-orodjar: priročnik (Navodnik, Velenje, 1990) Google Scholar
  2. A.J.O. Lenick, Basic silicone chemistry—a review. J. Surfactants Deterg. 3, 387–393 (2000) ArticleGoogle Scholar
  3. B.D. Ratner, Biomaterials Science: An Introduction to Materials in Medicine (Academic Press, San Diego, 1996) BookGoogle Scholar
  4. E.G. Rochow, An Introduction to the Chemistry of Silicones (Wiley, New York, 1946) Google Scholar
  5. E.L. Lawrence, I.G. Turner, Materials for urinary catheters: a review of their history and development in the UK. Med. Eng. Phys. 27, 443–453 (2005). https://doi.org/10.1016/j.medengphy.2004.12.013ArticleCASGoogle Scholar
  6. B. Crowther, Handbook of Rubber Bonding (2001) Google Scholar
  7. J.G. Alauzun, S. Young, R. D’Souza, L. Liu, M.A. Brook, H.D. Sheardown, Biocompatible, hyaluronic acid modified silicone elastomers. Biomaterials 31, 3471–3478 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.069ArticleCASGoogle Scholar
  8. L. Yang, L. Li, Q. Tu, L. Ren, Y. Zhang, X. Wang, Z. Zhang, W. Liu, L. Xin, J. Wang, Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility. Anal. Chem. 82, 6430–6439 (2010). https://doi.org/10.1021/ac100544xArticleCASGoogle Scholar
  9. A.J. Keefe, N.D. Brault, S. Jiang, Using a Superhydrophilic Zwitterionic Polymer (2012) Google Scholar
  10. K. Schumm, T.B.L. Lam, Types of urethral catheters for management of short-term voiding problems in hospitalised adults. Cochrane Database Syst. Rev. 110–121 (2008). https://doi.org/10.1002/14651858.cd004013.pub3
  11. S.J. Clarson, Advanced Materials Containing the Siloxane (2010), pp. 3–10 Google Scholar
  12. M.J. Owen, Properties and applications of silicones applications of PDMS. Silicones Silicone-Modified Mater. 13–18 (2010) Google Scholar
  13. C.M. Kuo, Poly(dimethylsiloxane). Polym. Data Handb. 411–435 (1999). https://doi.org/10.1021/ja907879q
  14. F.C. Schilling, M.A. Gomez, A.E. Tonelli, Solid-state NMR observations of the crystalline conformation of poly(dimethylsiloxane). Macromolecules 24, 6552–6553 (1991) ArticleCASGoogle Scholar
  15. R.P. Brown, T. Butler, Natural Ageing of Rubber (Birmingham, 2000) Google Scholar
  16. M.J. Owen, P.R. Dvornic (eds.), Silicone Surface Science (Springer, 2012) Google Scholar
  17. G. Bellussi, M. Bohnet, J. Bus, K. Drauz, H. Greim, K.-P. Jäckel, U. Karst, A. Kleemann, G. Kreysa, T. Laird, W. Meier, E. Ottow, M. Röper, K. Scholtz, J. Sundmacher, R. Ulber, U. Wietelmann, Ullmann’s Encyclopedia of Industrial Chemistry, 7th edn. (Wiley-VCH, 2011) Google Scholar
  18. A. Colas, J. Curtis, Silicone Biomaterials : History and Chemistry Medical Applications of Silicones Dow Corning Corporation Biomaterials Science, 2nd edn. About the Authors, Burns (2004), p. 20. https://doi.org/10.1016/b978-0-08-087780-8.00025-5ChapterGoogle Scholar
  19. J. Curtis, P. Klykken, A Comparative Assessment of Three Common Catheter Materials (Dowcorningcom, 2008), pp. 1–8 Google Scholar
  20. B. Trautner, R. Darouiche, Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control 32, 177–183 (2004). https://doi.org/10.1016/j.ajic.2003.08.005.RoleArticleGoogle Scholar
  21. L.E. Nicolle, The chronic indwelling catheter and urinary infection in long-term-care facility residents. Infect. Control Hosp. Epidemiol. 22, 316–321 (2001). https://doi.org/10.1086/501908ArticleCASGoogle Scholar
  22. L. Muzzi-Bjornson, L. Macera, Preventing infection in elders with long-term indwelling urinary catheters. J. Am. Acad. Nurse Pract. 23, 127–134 (2011). https://doi.org/10.1111/j.1745-7599.2010.00588.xArticleGoogle Scholar
  23. D.J. Chauvel-Lebret, P. Pellen-Mussi, P. Auroy, M. Bonnaure-Mallet, Evaluation of the in vitro biocompatibility of various elastomers. Biomaterials 20, 291–299 (1999). https://doi.org/10.1016/S0142-9612(98)00181-1ArticleCASGoogle Scholar
  24. J. Park, R.S. Lakes (eds.), Biomaterials: An Introduction (Springer, 2000) Google Scholar
  25. M. Bračič, Surface Modification of Silicone with Polysaccharides for the Development of Antimicrobial Urethral Catheters (Maribor, 2016) Google Scholar
  26. K.V. Iserson, J.-F.-B. Charrière: the man behind the “French” gauge. J. Emerg. Med. 5, 545–548 (1987) ArticleCASGoogle Scholar

Author information

Authors and Affiliations

  1. Laboratory for Characterization and Processing of Polymers (LCPP), Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia Matej Bračič, Simona Strnad & Lidija Fras Zemljič
  1. Matej Bračič